123 Main Street, New York, NY 10001

Introduction & Scope

Wideband high-PSRR LDOs preserve ripple rejection up to 10 kHz–10 MHz, scrubbing switching-regulator residue so sensitive analog rails stay clean. This page focuses on selection, layout, and validation that keep PSRR high under real load, spread-spectrum, and temperature.

Scope: wideband PSRR only (10 kHz–10 MHz). For low-noise, ultralow-Iq, DDR VTT/Vref, high-voltage, or RF bias topics, see sibling pages.

Imaging ADC / Reference Sensor Front-End PLL / Clock IF / Baseband Audio Preamp DC-DC → LDO Chain
DC-DC Residue Base + harmonics + beat Wideband High-PSRR LDO Attenuation band: 10 kHz → 10 MHz Clean Analog Rails Imaging / Sensors / PLL / IF 10 kHz 1 MHz 10 MHz
Map the goal: DC-DC residue (left) → LDO attenuation band (10 kHz–10 MHz) → clean analog rails (right).

Why Wideband PSRR

Switching rails carry base, harmonics, beat, and spread-spectrum energy that often lands in 10 kHz–10 MHz. Layout parasitics and ground return can bypass the LDO so remote nodes see higher ripple. A wideband high-PSRR LDO plus correct integration keeps the rail clean.

Spectrum realities

Base & harmonics (fsw,2f,3f), beat |f1−f2|, burst/PFM, spread-spectrum → energy spreads into 10 kHz–MHz.

System coupling

Long traces, poor AGND-PGND tie, ESR drift, and bad Kelvin sense erode PSRR at the remote node.

What to specify

PSRR @ 10 kHz / 100 kHz / 1 MHz / 5 MHz / 10 MHz under fixed VIN, VOUT, ILOAD, and Cout/ESR.

Hold it in the real world

Verify with sweep injection, load steps, cable A/B, and spread-spectrum on/off; measure at remote node.

DC-DC Ripple & harmonics High-PSRR LDO 10 kHz–10 MHz band Remote Load Imaging / Sensors / PLL Ground return coupling Long trace pickup ESR window shift Poor Kelvin sense
Where PSRR is lost: ground return, long traces, ESR shift, and bad Kelvin sense can bypass the LDO at the remote node.
  • Specify PSRR at 10 kHz / 100 kHz / 1 MHz / 5 MHz / 10 MHz under fixed VIN, VOUT, ILOAD, Cout/ESR.
  • Measure at remote node; compare spread-spectrum on/off; include load-step and cable A/B.
  • Keep Cout at the load; single-point AGND-PGND; avoid creating an inner loop at sense RC.

Mechanisms Behind PSRR

Inside an LDO, the error amplifier (EA), loop bandwidth, transmission zeros/poles, and package/ESR effects together set how far PSRR extends into the MHz range and why it may collapse on real boards.

EA & UGF

gm-EA and higher UGF improve mid/high-band PSRR but tighten stability; verify phase margin >45° (prefer >60°) with target Cout/ESR.

ESR Zero

An ESR zero can lift mid-band PSRR; drift with bias/temperature moves the zero and can reduce MHz suppression.

Package/Parasitics

Lead/trace inductance with Cout may form MHz bumps; bad AGND–PGND return pollutes EA reference.

Sense & Feedforward

Avoid turning the sense RC into a hidden inner loop; use feedforward only within the stable ESR window.

PSRR (dB) 10 kHz 1 MHz 10 MHz ESR zero UGF Package/trace bump
Mid-band lift from the ESR zero, roll-off near UGF, and a package/trace bump that erodes MHz suppression.
DC-DC Ripple High-PSRR LDO EA + sense Remote Load Analog rail Sense RC → inner loop AGND–PGND return coupling
Two common failures: a sense RC acting like an inner loop, and AGND–PGND coupling that bypasses the LDO at the remote node.

Data-Sheet Reading Guide

Read PSRR plots with conditions first (VIN, VOUT, ILOAD, Cout/ESR, temperature, package). Extract values at 10 kHz · 100 kHz · 1 MHz · 5 MHz · 10 MHz, then check hold under VIN/ILOAD/Temp and package/board differences.

PSRR vs Frequency to 10 MHz PSRR vs VIN 100k/1M/10M PSRR vs ILOAD Temperature Corners −40/25/85/125 °C Package / Board layout impact Cout / ESR Window min/typ/max
Must-have panels to 10 MHz: vs frequency, vs VIN, vs ILOAD, temperature corners, package/board, and Cout/ESR window.

Reading steps (copy & run)

  1. Confirm conditions: VIN, VOUT, ILOAD, Cout/ESR, temperature, package/board.
  2. Extract PSRR at 10 kHz · 100 kHz · 1 MHz · 5 MHz · 10 MHz.
  3. Check hold under VIN/ILOAD sweeps and temperature corners; compare packages.
  4. Spot artifacts near ESR zero and any MHz bump from package/trace parasitics.
  5. Write a spec: Cout/ESR window, stability margin, remote-node verification method.
PN (Brand) Test Conditions (VIN/VOUT/ILOAD/Cout-ESR/Temp/Package) PSRR@10k @100k @1M @5M @10M Notes
VIN= — , VOUT= — , ILOAD= — , Cout/ESR= — , Temp= — , Pkg= — — dB — dB — dB — dB — dB ESR window / UGF hint

Design Rules

Keep wideband PSRR by aligning compensation, feedback, feedforward, and the Cout/ESR window with stability targets. Design for the MHz range, then verify at the remote node.

Compensation

Target UGF for bandwidth; keep phase margin >45° (prefer >60°) with the intended Cout/ESR window.

Feedback (FB)

Place the divider close to the LDO and a clean AGND; avoid long traces that introduce unwanted zeros/poles.

Feedforward

Use to lift mid-band; ensure it does not create an MHz peak. Tune with the comp network, not against it.

Cout & ESR Window

Specify min/typ/max Cout and effective ESR under bias/temperature; place Cout at the load (≤10 mm).

Loop & UGF UGF target PM > 45° (60° best) Feedforward Mid-band boost (safe) Avoid MHz peaking Placement Cout at load (≤10 mm) Clean AGND tie No hidden sense RC loop
Anchor the design: UGF + phase margin, a safe feedforward window, remote Cout, and no hidden sense loop.

Checklist

  • Target UGF for MHz PSRR; verify PM >45° with intended Cout/ESR.
  • Place FB divider near LDO; clean AGND; short traces.
  • Use feedforward to lift mid-band; no MHz peaking.
  • Specify min/typ/max Cout and effective ESR; Cout at the load.
  • Measure at the remote node; compare spread-spectrum on/off.

Ripple Sources & Tracking

Switching rails contain base & harmonics, beat, burst/PFM, and spread-spectrum energy. Mark what is in-band (attenuated by the LDO) vs out-of-band (needs layout/shielding or a secondary filter).

10 kHz 1 MHz 10 MHz LDO attenuation band 10 kHz → 10 MHz (effective range varies) spread smear in-band → LDO attenuates out-of-band → mitigate
Classify ripple: in-band is attenuated by the LDO; out-of-band needs layout/shielding or a secondary filter (or adjust fsw/spread).

Base & Harmonics

fsw, 2f, 3f… If peaks fall in-band, set UGF/ESR window to cover; if out-of-band, reduce coupling or filter.

Beat

|f1−f2| often lands 10 kHz–100s kHz. Phase/clock plan first; then spread if needed.

Burst / PFM

Envelope and sub-harmonics raise low-mid band. Add minimum load or adjust mode boundaries.

Spread-Spectrum

Smears energy; may leak out-of-band. Compare on/off at the remote node before deciding.

Freq / Feature Amplitude @ Local Amplitude @ Remote In-band / Out-of-band Condition (Spread/Load/Temp) Likely Cause Action
— (e.g., 500 kHz, 2f) In-band / Out-of-band Spread on/off; load step %; temp Package bump / long trace / ESR Adjust UGF/ESR; shorten trace; shield

Mitigation decisions

  • In-band high → tune comp/UGF, correct ESR window, add remote Cout.
  • Out-of-band high → reroute/shorten trace, shield, add secondary filter, or shift fsw.
  • Beat → change phase/clock plan first, then consider spread.
  • Burst/PFM → raise min load or stabilize mode boundary.

Stability & Loop Interaction

Keep wideband PSRR intact by preventing hidden inner loops and extra zeros/poles. Sense/FB RC must not become another loop; align ESR zero, UGF, and remote Cout so the main loop stays dominant.

Do: Single-Point AGND

Tie EA reference at one point to PGND. Keep high-current return out of the EA path.

Do: Remote Cout

Place Cout at the load. Ensure total ESR/ESL stays within the stability window.

Don’t: Sense RC Inner Loop

If you filter FB, keep fRC ≳ 5×UGF or move it before the clean reference node.

Don’t: Stack Resonances

Avoid placing ESR zero or trace/package resonance near UGF (no MHz bump).

Hidden Inner Loop (Don’t) DC-DC Ripple LDO (EA + pass) Remote Load sense RC → extra loop Safe Placement (Do) DC-DC Ripple LDO (clean AGND) Remote Load RC before clean reference, f_RC ≳ 5×UGF
Keep FB filtering outside the control bandwidth and tied to a clean reference; don’t let sense RC form a hidden inner loop.
10 kHz 1 MHz 10 MHz PSRR-effective band UGF ESR zero (OK) near UGF (risk) MHz bump (avoid)
Keep ESR zero comfortably below UGF; keep remote-trace/package resonance away from the bandwidth limit to avoid a MHz bump.

Quick self-check

  • UGF/PM measured at target Cout/ESR (PM >45°, prefer >60°).
  • No sense/FB RC forming an extra loop (fRC ≳ 5×UGF).
  • ESR zero and remote resonance not near UGF; no MHz bump.
  • Single-point AGND; EA reference path is ripple-free.
  • Remote-node PSRR verified vs spread on/off and load steps.

Application Scenarios

Six common analog domains benefit from 10 kHz–10 MHz PSRR. For each, specify key frequency points, layout essentials, and a remote-node validation plan before part selection.

LDO PSRR-effective band (10 kHz → 10 MHz) Imaging ADC Low-Noise Preamp Sensor Bridge PLL / Clock IF / Baseband Precision Ref / Buffer 10 kHz 1 MHz 10 MHz
Scenario emphasis bands over the LDO attenuation range (10 kHz–10 MHz).

Imaging ADC / Reference

Band: 1–5 MHz + spurs

Min spec: PSRR ≥ X dB @ 100k/1M/5M; PM >60°

Layout: Cout at ADC pin; quiet AGND

Validation: FFT at remote node; exposure switch

Low-Noise Preamp

Band: 10 kHz–1 MHz

Min spec: PSRR ≥ X dB @ 10k/100k/1M

Layout: FB near LDO; star AGND

Validation: EIN vs spread on/off

Sensor Bridge / Front-End

Band: 10 kHz–500 kHz

Min spec: PSRR ≥ X dB @ 10k/100k/500k

Layout: Kelvin to bridge; split CM

Validation: temp corners; zero drift vs step

PLL / Clock

Band: 100 kHz–10 MHz

Min spec: PSRR ≥ X dB @ 100k/1M/10M

Layout: isolate from RF loop

Validation: phase-noise sidebands

IF / Baseband

Band: 100 kHz–5 MHz

Min spec: PSRR ≥ X dB @ 100k/1M/5M

Layout: orthogonal to RF path

Validation: ACP/adjacent-channel ratio

Precision Ref / Buffer

Band: 10 kHz–1 MHz (+ spur)

Min spec: PSRR ≥ X dB @ 10k/100k/1M

Layout: star return; short trace

Validation: line/load regulation vs temp/spread

Scenario Key Band PSRR Targets (10k / 100k / 1M / 5M / 10M) Layout Essential Validation Note
Imaging ADC / Ref 1–5 MHz + spur — / — / — / — / — dB Cout at ADC pin; star AGND Remote FFT; exposure switch
Low-Noise Preamp 10 kHz–1 MHz — / — / — / — / — dB FB near LDO; short trace EIN vs spread
Sensor Bridge 10 kHz–500 kHz — / — / — / — / — dB Kelvin sense; split CM Temp corners; zero drift
PLL / Clock 100 kHz–10 MHz — / — / — / — / — dB Isolate from RF loop Sidebands vs spread
IF / Baseband 100 kHz–5 MHz — / — / — / — / — dB Orthogonal routing ACP comparison
Precision Ref / Buffer 10 kHz–1 MHz — / — / — / — / — dB Star return; short trace Line/load vs temp

Validation Playbook

Validate wideband PSRR at the remote node: sweep injection, compare remote vs local spectra, run load steps, repeat with cable/fixture A/B, and scan thermal hotspots. Log Vload error and compensation % for A/B decisions.

1) Injection Sweep

Inject small-signal; capture UGF/PM and PSRR baseline up to 10 MHz.

2) Remote vs Local

FFT both nodes and compute ΔPSRR; keep probe/ground identical.

3) Load Steps

10–50% Iload; log overshoot/settling and spread on/off delta.

4) Cable A/B

Swap cables/fixture; confirm peaks are not test artifacts.

5) Thermal Hotspots

Scan EA/pass/Cout/load; correlate MHz bumps with ΔT.

Injection UGF / PM PSRR baseline Remote vs Local ΔPSRR Load Steps 10–50% Iload overshoot/settle Cable A/B fixture sanity Thermal Scan ΔT at EA / pass / Cout / load Log Vload_error (mVpp, mean), PSRR_dB(f), Comp_% , Spread on/off
One page, five steps. Always judge at the remote node and log numbers for A/B decisions.
Freq / Feature Amp @ Local Amp @ Remote In-band / Out-of-band Condition (Spread/Load/Temp) Likely Cause Action
500 kHz (2f) In-band Spread off; 20% step Trace ESL / ESR window Tune UGF/ESR; add remote MLCC
5 MHz (bump) Out-of-band Spread on; 40% step Package/trace resonance Shorten route; shield; 2nd filter
UGF / PM vs Comp_% Baseline After +10% comp PSRR (1M/5M/10M) & Vload_error Baseline After +10% comp
Log-driven tuning: relate compensation % to UGF/PM, PSRR at key frequencies, and Vload error to justify changes.
Case Comp % UGF / PM PSRR @ 100k/1M/5M/10M Vload error (mVpp) ΔT (°C)
Baseline 0% — / —° — / — / — / — dB
After tuning +10% — / —° — / — / — / — dB

Pass criteria (copy & use)

  • UGF/PM meet target under intended Cout/ESR; no MHz bump near UGF.
  • ΔPSRR(remote−local) meets scenario goals at 10k/100k/1M/5M/10M.
  • Vload error within limit on 10–50% load steps; no long tail.
  • Results repeat with cable/fixture A/B and spread on/off.
  • No thermal hotspot correlated with spectral peaks.

Layout Checklist

Preserve wideband PSRR with single-point AGND–PGND tie, tight decoupling at the load, Kelvin sense, and shielded routing. Verify with the same remote-node metrics used in validation.

G1: AGND–PGND One Point

Tie near the reference pin; keep high-current return off the EA path.

G2: Tight Decoupling

Place MLCC between LDO and load pins; Cout ≤10 mm from the load.

G3: Kelvin Sense

Sense remote node with paired traces; guard to AGND where needed.

G4: Routing & Shielding

Orthogonal power vs sensitive RF/analog; add ground fence/plane.

G5: Parasitics

Check Ltrace×Cout resonance; offset ESR zero from UGF.

LDO (EA + pass) Load AGND–PGND tie good: high-current return away from EA bad: return through EA reference
One-point tie near the reference. Keep the high-current path off the EA reference route.
LDO Out Load pin Cout (at load) Kelvin sense guard to AGND
Place Cout at the load, keep a tight MLCC loop, sense remotely with paired traces and guard to AGND.

Layout self-check (copy & use)

  • AGND–PGND tied at one point near reference; EA path is quiet.
  • MLCC loop between LDO and load is tight; Cout ≤10 mm from load.
  • Kelvin sense to the remote node; short, parallel, guarded traces.
  • Power vs sensitive routing is orthogonal/isolated with ground fence.
  • Ltrace×Cout resonance kept away from UGF; no MHz bump.

Mini IC-Selection Pointers (Seven Brands)

Example PNs added for quick screening; final choices must be verified against official datasheets and your stability/PSRR validation plan. Avoid cross-page overlap by keeping notes scenario-specific.

Submit BOM (48h)
TI ST NXP Renesas onsemi Microchip Melexis
Brand Use_Cases PSRR_Targets (10k/100k/1M/5M/10M dB) Output_Noise Iq_Typ Vin / Vout Range Iout_Max Dropout@Iout Stability_Window (C/ESR) Features Temp_Grade Package Notes (Example PN) Datasheet_URL
Texas Instruments Imaging ADC / Reference ≥80 / ≥70 / ≥50 / ≥40 / ≥35 ultra-lowlow wide / 0.6–5.51 A typ 150 mVMLCC; ESR window per DS wide-band EA; PG-40~+125 WSON TPS7A94 — RF/PLL/Imaging wideband PSRR TI PDF
Low-Noise Preamp≥70 / ≥65 / ≥45 / ≥35 / ≥30 ultra-lowlow wide / 0.6–5.51 A typ 150 mVMLCC; ESR window per DS enable; PG-40~+125WSON TPS7A94 — mic/AFE sensitive rails TI page
Sensor Bridge≥70 / ≥65 / ≥45 / ≥35 / ≥30 ultra-lowlow wide / 0.6–5.51 A typ 150 mVMLCC; ESR window per DS remote sense ready-40~+125WSON TPS7A94 — Kelvin sense layout TI PDF
PLL / Clock≥75 / ≥70 / ≥50 / ≥40 / ≥35 ultra-lowlow wide / 0.6–5.51 A typ 150 mVMLCC; ESR window per DS low spur-40~+125WSON TPS7A94 — sideband sensitive TI page
IF / Baseband≥65 / ≥60 / ≥45 / ≥35 / ≥30 very lowlow wide / 0.6–5.51 A typ 150 mVMLCC PG; enable-40~+125WSON TPS7A52 — higher current alt TI page
Precision Ref / Buffer≥75 / ≥65 / ≥45 / ≥35 / ≥30 ultra-lowlow wide / 0.6–5.51 A typ 150 mVMLCC soft-start-40~+125WSON TPS7A94 — ref/buffer cleanup TI PDF
STMicroelectronics Imaging ADC / Reference≥70 / ≥60 / ≥40 / ≥30 / ≥25 very lowvery low1.5–5.5 / fixed 250 mAlowceramic; ESR per DS enable-40~+125DFN/SOT LDLN025 — high PSRR & low noise ST PDF
Low-Noise Preamp≥65 / ≥55 / ≥38 / ≥28 / ≥22very lowvery low 1.5–5.5 / fixed250 mAlowceramic PG opt-40~+125DFN/SOT LDLN025 — mic/AFE ST PDF
Sensor Bridge≥65 / ≥55 / ≥38 / ≥28 / ≥22very lowvery low 1.5–5.5 / fixed250 mAlowceramic remote friendly-40~+125DFN/SOT LDLN025 — Kelvin sense routing ST PDF
PLL / Clock≥70 / ≥60 / ≥40 / ≥30 / ≥25very lowvery low 1.5–5.5 / fixed250 mAlowceramic VCO friendly-40~+125DFN/SOT LDLN025 — clock rails ST PDF
IF / Baseband≥60 / ≥50 / ≥35 / ≥25 / ≥20lowvery low 1.5–5.5 / fixed500 mAmodceramic LDLN050 alt-40~+125DFN LDLN050 — higher current alt ST PDF
Precision Ref / Buffer≥70 / ≥60 / ≥40 / ≥30 / ≥25very lowvery low 1.5–5.5 / fixed250 mAlowceramic enable-40~+125DFN/SOT LDLN025 — ref/buffer cleanup ST PDF
NXP Imaging ADC / Reference≥60 / ≥55 / ≥35 / ≥25 / ≥20 lowlow2.3–5.5 / fixed 150 mAmodceramic enable-40~+85/125TSOP5 LD6805 — high-PSRR LDO family NXP PDF (dist.)
Low-Noise Preamp≥58 / ≥52 / ≥34 / ≥24 / ≥18lowlow 2.3–5.5 / fixed150 mAmodceramic -40~+85/125TSOP5 LD6815 — family alt NXP PDF (dist.)
Sensor Bridge≥58 / ≥52 / ≥34 / ≥24 / ≥18lowlow 2.3–5.5 / fixed150 mAmodceramic -40~+85/125TSOP5 LD6805 — remote clean rail NXP PDF (dist.)
PLL / Clock≥60 / ≥55 / ≥35 / ≥25 / ≥20lowlow 2.3–5.5 / fixed150 mAmodceramic -40~+85/125TSOP5 LD6805 — clock rails NXP PDF (dist.)
IF / Baseband≥55 / ≥50 / ≥32 / ≥24 / ≥18lowlow 2.3–5.5 / fixed150 mAmodceramic -40~+85/125TSOP5 LD6815 — baseband alt NXP PDF (dist.)
Precision Ref / Buffer≥60 / ≥55 / ≥35 / ≥25 / ≥20lowlow 2.3–5.5 / fixed150 mAmodceramic -40~+85/125TSOP5 LD6805 — ref/buffer alt NXP PDF (dist.)
Renesas Imaging ADC / Reference≥70 / ≥60 / ≥40 / ≥30 / ≥25 very lowlow2.3–6.5 / fixed 300 mAmod1–10 µF; ESR ≤0.2Ω BP pin-40~+85/125DFN/SOT ISL9001A — high PSRR, BP for low noise Renesas PDF
Low-Noise Preamp≥65 / ≥58 / ≥38 / ≥28 / ≥22very lowlow 2.3–6.5 / fixed300 mAmod1–10 µF BP pin-40~+85/125DFN/SOT ISL9001A — mic/AFE Renesas page
Sensor Bridge≥65 / ≥58 / ≥38 / ≥28 / ≥22very lowlow 2.3–6.5 / fixed300 mAmod1–10 µF BP pin-40~+85/125DFN/SOT ISL9001A — remote bridge rails Renesas PDF
PLL / Clock≥70 / ≥60 / ≥40 / ≥30 / ≥25very lowlow 2.3–6.5 / fixed300 mAmod1–10 µF BP pin-40~+85/125DFN/SOT ISL9001A — clock rails Renesas page
IF / Baseband≥60 / ≥55 / ≥35 / ≥25 / ≥20lowlow 2.3–6.5 / fixed300 mAmod1–10 µF BP pin-40~+85/125DFN/SOT ISL9001A — baseband Renesas PDF
Precision Ref / Buffer≥70 / ≥60 / ≥40 / ≥30 / ≥25very lowlow 2.3–6.5 / fixed300 mAmod1–10 µF BP pin-40~+85/125DFN/SOT ISL9001A — ref/buffer cleanup Renesas page
onsemi Imaging ADC / Reference≥65 / ≥60 / ≥40 / ≥30 / ≥25 very lowvery low1.9–5.5 / fixed 450 mAmod1 µF ceramic low noise, high PSRR-40~+125TSOP/XDFN NCV8161 — RF/analog onsemi page
Low-Noise Preamp≥60 / ≥55 / ≥38 / ≥28 / ≥22very lowvery low 1.9–5.5 / fixed450 mAmod1 µF ceramic -40~+125TSOP/XDFN NCV8161 — mic/AFE onsemi page
Sensor Bridge≥60 / ≥55 / ≥38 / ≥28 / ≥22very lowvery low 1.9–5.5 / fixed450 mAmod1 µF ceramic Kelvin friendly-40~+125TSOP/XDFN NCV8161 — bridge rails onsemi PDF
PLL / Clock≥65 / ≥60 / ≥40 / ≥30 / ≥25very lowvery low 1.9–5.5 / fixed450 mAmod1 µF ceramic -40~+125TSOP/XDFN NCV8161 — clock rails onsemi page
IF / Baseband≥58 / ≥53 / ≥35 / ≥25 / ≥20lowvery low 1.9–5.5 / fixed450 mAmod1 µF ceramic -40~+125TSOP/XDFN NCV8161 — baseband onsemi PDF
Precision Ref / Buffer≥65 / ≥60 / ≥40 / ≥30 / ≥25very lowvery low 1.9–5.5 / fixed450 mAmod1 µF ceramic -40~+125TSOP/XDFN NCV8161 — ref/buffer onsemi page
Microchip Imaging ADC / Reference≥60 / ≥55 / ≥35 / ≥25 / ≥20 lowlow2.5–5.5 / fixed 300 mAmodceramic auto-discharge-40~+125DFN MIC5504 — compact high-PSRR Microchip page
Low-Noise Preamp≥58 / ≥52 / ≥34 / ≥24 / ≥18lowlow 2.5–5.5 / fixed300 mAmodceramic auto-discharge-40~+125DFN MIC5504 — mic/AFE Microchip page
Sensor Bridge≥58 / ≥52 / ≥34 / ≥24 / ≥18lowlow 2.5–5.5 / fixed300 mAmodceramic auto-discharge-40~+125DFN MIC5504 — bridge rails Microchip page
PLL / Clock≥60 / ≥55 / ≥35 / ≥25 / ≥20lowlow 2.5–5.5 / fixed300 mAmodceramic auto-discharge-40~+125DFN MIC5504 — clock rails Microchip page
IF / Baseband≥55 / ≥50 / ≥32 / ≥22 / ≥18lowlow 2.5–5.5 / fixed300 mAmodceramic auto-discharge-40~+125DFN MIC5504 — baseband Microchip page
Precision Ref / Buffer≥60 / ≥55 / ≥35 / ≥25 / ≥20lowlow 2.5–5.5 / fixed300 mAmodceramic auto-discharge-40~+125DFN MIC5504 — ref/buffer Microchip page
Melexis Imaging ADC / Reference(pair with external high-PSRR LDO) Sensors often integrate regulators Use TI/ST/Renesas LDO upstream; e.g., MLX90290 integrates regulator Melexis PDF
Low-Noise Preamp(use external LDO) Pair with wideband PSRR LDO upstream Melexis site
Sensor Bridge(use external LDO) Kelvin to sensor ground domain Melexis site
PLL / Clock(use external LDO) External LDO recommended Melexis site
IF / Baseband(use external LDO) External LDO recommended Melexis site
Precision Ref / Buffer(use external LDO) Use wideband PSRR LDO upstream Melexis site
Submit BOM (48h)

Frequently Asked Questions

What PSRR numbers matter for imaging ADC rails at 1–5 MHz?

Prioritize remote-node PSRR at 1 MHz and 5 MHz, verified with identical probe setup on local vs remote nodes. Set scenario targets (e.g., ≥X dB @1 MHz, ≥Y dB @5 MHz) and confirm stability via UGF/PM from injection sweeps. See Application Scenarios and Validation.

How do I read PSRR plots across frequency, VIN ripple, load, and temperature?

Compare curves vs frequency at fixed load and VIN first, then observe shifts with load/temperature. Identify knees where attenuation drops. Align ESR zero below UGF and confirm the same bandwidth in your test. Start at Data-Sheet Guide and Design Rules.

Where should sense/FB RC sit so it won’t form a hidden inner loop?

Keep the RC before a clean reference node or place its corner at least five times the loop UGF (fRC ≧ 5×UGF). Avoid remote RC returning through noisy grounds. Validate by load-step settling and PSRR around the knee. See Stability.

Does spread-spectrum on the DC-DC help or hurt in-band PSRR?

It flattens narrow spurs but can push energy into your LDO’s effective band. Compare spectra with spread on/off at the remote node and check ΔPSRR vs targets. Keep MHz bump away from UGF. See Ripple Tracking and Validation.

What is a safe ESR/Cap window to keep wideband attenuation?

Use the vendor’s stability window for Cout and ESR, placing the ESR zero comfortably below UGF. Verify with injection sweeps and remote FFT; if you see a MHz bump, shift ESR or reduce trace inductance. See Design Rules.

How do I size Cout and route Kelvin sense for maximum PSRR?

Place Cout at the load with a tight MLCC loop; sense the remote node using short, paired traces and optional AGND guard. Keep power and sensitive routes orthogonal. Confirm ΔPSRR(remote-local) improvement. See Layout.

Which metrics decide pass/fail in validation?

Judge UGF/PM against targets, ΔPSRR(remote−local) at 10k/100k/1M/5M/10M, and Vload error on 10–50% steps. Repeat with cable A/B and spread on/off to confirm robustness. See Validation.

When do I need a differential-sense LDO vs a standard LDO?

Use differential-sense when remote routing adds significant drop/inductance or the load is highly ripple-sensitive (imaging, PLL). It maintains regulation at the remote node and improves PSRR consistency. Check EA bandwidth and stability window. See Mechanisms and IC-Selection.

Can a post-LDO RC/LC filter help without risking instability?

It can attenuate out-of-band content but may add poles/zeros near UGF. Place the filter so its corner avoids the control bandwidth and verify with injection sweeps and remote FFT. Watch for longer settling tails. See Stability and Design Rules.

How do temperature and load current shift PSRR knees?

Higher temperature and heavier load often push the knee lower and reduce peak attenuation. Compare PSRR curves across corners and confirm with your remote-node setup. Adjust ESR window or UGF as needed. See Data-Sheet Guide and Scenarios.

How do I compare vendors with different PSRR bandwidths?

Normalize conditions: same VIN ripple level, load, temperature, and measurement bandwidth. Interpolate at your scenario points (10k/100k/1M/5M/10M) and validate at the remote node. Use a common pass/fail checklist. See Data-Sheet Guide and IC-Selection.

How do I avoid test-fixture artifacts (cable A/B) that fake a MHz bump?

Repeat tests with two cable/fixture setups, keeping probe geometry identical. If a peak shifts with the fixture, treat it as an artifact. Shorten routes, add shielding, or adjust termination to confirm. See Validation.

What PSRR targets are realistic for PLL/clock rails?

Aim for robust attenuation at 100 kHz and 1 MHz, then quantify at 10 MHz if the clocking chain is sensitive. Sidebands drive audible/visible artifacts; validate with phase-noise measurement tied to the remote rail. See Scenarios.

Does feedforward improve wideband PSRR or only load transients?

Feedforward mainly helps transient response; its wideband PSRR impact depends on pole/zero placement. If it creates a near-UGF zero, you may degrade stability. Validate via injection and remote FFT after enabling feedforward. See Mechanisms and Design Rules.

How do I plan AEC-Q100 variants and temperature grades without changing stability?

Keep the same Cout/ESR window and verify PSRR at temperature corners. If package or grade changes parasitics, re-check UGF/PM and remote ΔPSRR. Prefer parts with documented stability windows across grades. See IC-Selection and the LDO hub.

Submit BOM (48h)